A Direct Solver for the Heat Equation with Domain Decomposition in Space and Time

نویسنده

  • Marc Garbey
چکیده

In this paper we generalize the Aitken-like acceleration method of the additive Schwarz algorithm for elliptic problems to the additive Schwarz waveform relaxation for the heat equation. The domain decomposition is in space and time. The standard Schwarz waveform relaxation algorithm has a linear rate of convergence and low numerical efficiency. This algorithm is, however, friendly to cache use and scales with the memory in parallel environments. We show that our new acceleration procedure of the waveform acceleration algorithm results in a fast direct solver.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A direct solver for time parallelization

Using the time direction in evolution problems for parallelization is an active field of research. Most of these methods are iterative, see for example the parareal algorithm analyzed in [3], a variant that became known under the name PFASST [10], and waveform relaxation methods based on domain decomposition [5, 4], see also [1] for a method called RIDC. Direct time parallel solvers are much mo...

متن کامل

Consolidation Around a Heat Source in an Isotropic Fully Saturated Rock with Porous Structure in Quasi-Static State

The titled problem of coupled thermoelasticity for porous structure has been solved with an instantaneous heat source acting on a plane area in an unbounded medium. The basic equations of thermoelasticity, after being converted into a one-dimensional form, have been written in the form of a vector-matrix differential equation and solved by the eigenvalue approach for the field variables in the ...

متن کامل

A truly meshless method formulation for analysis of non-Fourier heat conduction in solids

The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...

متن کامل

Area Energy and Throughput Targeting in Debottlenecking of Heat Exchanger Networks with Decomposition Approach

For energy saving retrofit projects, its economics are usually evaluated in terms of capital investment and payback time. The capital investment is in direct relation to the total heat recovery area of the network and the payback time factor is base on both the area and the energy savings. The debottlenecking is an increased throughput, which can be profitable in economic sense. The combination...

متن کامل

Domain Decomposition Methods for the Helmholtz Equation: A Numerical Investigation

where k := 2π f/c is the wavenumber with frequency f ∈ R and c := c(x,y,z) is the velocity of the medium, which varies in space. The geophysical model SEG– SALT is used as a benchmark problem on which we will test some existing domain decomposition methods in this paper. In this model, the domain Ω is defined as (0,13520)× (0,13520)× (0,4200) m, the velocity is described as piecewise constants ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008